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RELAXATION FUNCTIONS, MEMORY FUNCTIONS, RAND(.I FORCES, AND ERGODICITY

IN THE ONE-DIMENSIONAL SPIN- XY AND TRANSVERSE ISING MODELS

JoAO FLORENCIO JR. and M. HOWARD LEE

DEPARTMENT OF PHYSICS, UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30602

We investigatethe dynamics of the one-dimensional S= isotropic

XY model and transverse Ising model in the high temperature limit

by using the method of recurrence relations. -We obtain the relaxation

functions as well as some Brownian analogs of a generalized Langevin

equation for a tagged spin'_ in these models, namely, the memory
eq4ation fo

functions and the random forces. 34e--fUd that the realized dynamical

Hilbert spaces of the two models have the same structure, which

leads to similar dynamical behavior apart from a time scale. Based on

the infinite dimensionality of these Hilbert spaces we-also concludel-.

that S iis ergodic in both models.
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I. ITRODUCTION

The one-dimensional spin-h XY model has been of considerable

theoretical interest in recent years .as a solvable many-body system

The Hamiltonian of this model is given by

N
H = 2 (JxSiSi + - B ES, (1.1)

i 1+1 i

where Si are spin operators, Ja are the coupling constants, and B is

I

an external magnetic field. Periodic boundary conditions are imposed,

so that SN S1 , where N is the total number of spins and a = x,y,or z.

In this paper we are concerned with two particular cases of this

Hamiltonian, namely, the isotropic XY model (XY) for which Jx=Y=J, B=O,

and the transverse Ising model (TI) where Jx=J, JY=O, and B=J.

Although the equilibrium properties of these systems are

well known1,2 , their dynamical behavior is less well understood.

There are exact results for the longitudinal time-dependent spin

correlation functions due to Niemeijer3 , and for the transverse

correlation functions in the limit of high temperature obtained by

4 5Brandt and Jacoby and also by Capel and Perk . The transverse spin

correlation functions for both the XY and TI cases in the high temperature

limit are found to be

x 1 , (1.2)<Sj(t)Sj> = 1 e-At 2 P(12

where A = J2 for the XY case, and J2/2 for the TI case.--The underlying

reason why the two cases have the same time dependence has not been

recognized so far.
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In this paper we use the method of recurrence relations due to

Lee 6 to study the time evolution of both the isotropic XY model and

the transverse Ising model in the high temperature limit. This method

allows one to obtain a detailed yet rigorous description of the

dynamics in such systems. It has been applied to some spin models
7,

89to an electron gas , to a classical harmonic oscillator chain9, and

to the study of velocity autocorrelation functions10 .

In the method of recurrence relations the time evolution

of a dynamical variable, e.g. SX(t), is described as an orthogonal
j

expansion ina properly defined Hilbert space, where the time dependency

is placed on the expansions coefficients. By inspecting the relative

norms of the dynamical Hilbert space for each of the XY and TI cases

we can readily see why these systems are dynamically equivalent in

the high temperature limit. With relatively little effort we recover

the transverse correlation function (1.2) for these systems. We would

also like to point out that these systems are dynamically equivalent

7to the spin Van der Waals model studied by Lee, Kim, and Dekeyser

We conjecture that there may also be other systems %with similar

dynamical behavior, for which their respective dynamical Hilbert

spaces have the same geometry, that is, the same dimensionality

and also the same relative norms of basis vectors.

To obtain further insight in the time evolution of these systems

we calculate some Brownian analogs of a aeneralized Langevin equation
for the spin variables, namely, the spin memory function and the

spin random force. We also discuss ergodicity in these models

based on the dimensionality of the realized Hilbert spaces of the

dynamical variables of interest.
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The arrangement of this paper is as follows. In Sec. II we review

the method of recurrence relations as well as its connections to

a generalized Langevin equation. In.Sec. III that method is applied

to the dynamical behavior of the isotropic XY model and the transverse

Ising model. Correlation functions, relaxation functions, memory functions,

and random forces are then obtained. Finally, in Sec. IV we summarize

our results and discuss ergodicity in these systems.

<;. L



4

II. 4ETHOD OF RECURRENCE RELATIONS

Consider a one-dimensional N spin- system described by a

Hamiltonian H. The time evolution of an operator G is given formally by

G(t) - eitL G(O), (2.1)

where L is the Liouville operator for the system, defined by

iLf E [f,H] - fH - Hf. (2.2)

Equation (2.1) can also be expressed by the expansion
6

d-1
G(t) z v0 a (t)f , (2.3)

where f are basis vectors ofa Hilbert space /S of d dimensions.

The positive definite scalar product in A is defined in the high

temperature limit (T=- ) as

(A,B) = 1 Tr AB+  (2.4)

where Z = 2 M is the partition function of the system in this limit.

By choosing fo = G(O) it follows that the remairnng basis vectors

f can be generated by the following recurrence relation (RRI):

f iLf + A f 0 (2.5)
V+1 V V V-1

bu L a., _ _LL
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where

(f = I V) 9 V>l 1 (2.6)
V. (f ,~v1 7

are the relative norms of the basis vectors, and by definition

f-1 1 .A= 1.

The coefficients aV(t), which are also the relaxation functions,

satisfy a second recurrence relation (RRII):

Av+av+l(t) = a (t) + a l(t) , v >O (2.7)

• da V(t)where adt a = 0. Notice that due to the initial choice
whrea(t) dt

f = G(O), it follows from Eq.(2.3) that ao(O) = 1, and av(0) = 0

for v>1. The complete time evolution of G(t) can thus be determined

by using RRI and RRII.

A generalized Langevin equation for the operator G(t), which is

formally equivalent to the Heisenberg equation of motion, is given by

dG~t)

dG(t) + f dt'O(t-t')G(t') = F(t) , (2.8)
dt 0

where 0 is the memory function and F the random force. Both p and F

can be readily obtained as follows. The random force is given by

d-1
F(t) Z b V(t)f , (2.9)

vw1 c

where the coefficients b V(t) satisfy the convolution equations

Ni 
.1
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t

a(t) = f dt'b (t-t')ao(t V'>1. (2.10)

0 J ta(',

The memory function is given simply by 0(t) = bl(t). The remaining by's,

that is, b2 , b3 , ... , are the 2nd memory function, 3rd memory function,m, etc. The reader is referred to the original formulation of the method

of recurrence relations for the detailed derivations of the relations

contained in this section6.

'S
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III. DYNAMICS OF THE XY AND TI MODELS

In this section we apply the method of recurrence relations

described in Sec. II to investigate the dynamical properties of

the XY and TI models at T = .Consider first the XY case, taking

Sas the dynamical variable of interest. The time evolution of S'X(t)

is given, according to Eq.(2.3), as

d-1
S'x(t) E a a(t)f~ (3.1)

4) v=O V

where f0  Sx(O) = Sx. By using RRI we obtain

f 2J(S S z + V

f2= - 4 jZ(SXS S z - X- S Sy1 + 2SY SXSY 1  V_ S3'5x + z S

j-2Sj-lj i j1 2 j+1 .j-j1 8SS S+YSXj+ j1j+)

f z2'2~ SS 3S ' + 4SZ SS + 2 y 5XZ 5j j1 j1 +1 -j+1 J- j-1i j+1j2

- 8Sx- SYSz Sx + 4SY_ SYSZ S -4S iS~ SZ y
j 1 j j+1 j+2 j1 j J+1 J+2 jj+1 j+2 j+3

4= 2 I j+ -I+1j 2(J_2Sj 1 j+ j-~1 j~+1 J+2

-~Sx- Sz S-S + SX3 - z SS ++S 1Szis2x

j.-4 JJJi 3 -2 11 J i i iJ+

z z z

--4(S*: S "+ + S SZ S^ 6(-3SJe~-: S
j-15j1 j-1j+1 j.2 - , J..3 ..-.1S s +1

+ 5yS - z YS + S S -z zS X Sy5Z S~ z
5J..2 jI j j+1 j+2 -2 jI-li j+1 j+2 + - j j+1 j+2 J+3)
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x 2Sx  z x z Sx •
8(3SX ij J+1 j- j j+1 j+ J+3 - j-2Sj-1~~~ j 21

etc. (3.2)

Thus an excitation of Sj at t=O will propagate through the chain

according to Eqs.(3.1 and 2). The basis vectors f correspond to

excitations of clusters of spin. There is a spatial hierarchy in

the f 's in the sense that as v increases, so do the boundaries of
V

the region in the chain within which clusters of spins are excited.

As we shall see later, there is also a hierarchy in the time sequence

in which the vectors f are excited, so that a true propagation of
V

the initial excitation throughout the chain does indeed take place.

In addition, the length of the clusters generally increases with v.

Notice also the appearance of "disconnected" clusters in vectors f

of higher dimensions of k consisting of groups of spins in which

at least one of the spins is separated from the others, e.g. Sj_ 2Sj_. 1Sj+ 1

in f4"

The relative norms A are easily obtained from Eqs.(2.4,6) and

(3.2). We find A1 = A, A2 = 2A, A3 = 3A, etc., where A = 2J2 .

7
The quantity Al is referred to in the literature as the basal frequency

In the thermodynamic limit there is no upper bound for v, so that

the dynamical Hilbert space has infinite dimensions (d

and the relative norms are given by

A = vA, ,; = ±, 2. 3, ... (3.3)

A relation similar to this was also obtained by Lee, Kim, and Dekeyser

in their study of the dynamics of the spin Van der Waals 
model.
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The recurrence relation (2.8) now reads

(v+l)aa V+1l M (t) + avl(t), v = 0, 1, 2, ... (3.4)

It is satisfied by

-"_ ) = exp(- 2t 2) (3.5)

These are the so-called relaxation functions.

In terms of normalized basis vectors F = (f f )- f

the time evolution of Sx(t) is given by

S (t) E Z A (t)F 9 (3.6)

V=0 V V0

where

A"t) -.2 (t)) exp(-At2 ) (3.7)AVt 2 (V! .'

%J This quantity satisfies the Bessel equality

A2(t) = (3.8)
v=O V 4

That is, the length of the vector Sx(t) in the dynamical Hilbert space

is an invariant of time. 6 ,10 In Fig.1 we show the time dependent

probabilities A2(t) (normalized to -) in early stages where Sx(t) samples

the space of the lower basis vectors. Notice that due to the

pre-exponential factor in A (t), the basis vectors corresponding to

the lower dimensions of are more likely to be initially excited

before those of higher dimensions. In addition, each of the
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probabilities A2(t) decay in a Gaussian manner, so that a somewhat

localized, yet spreading, group of basis vectors are being excited

as time progresses. This corresponds to a.propagation of the initial ;"-

excitation throughout the spin system. This propagation, however,

is to be understood in a quantum mechanical context, since the Bessel

equality (3.8) holds for all times. That is because actually all the f 's

are excited for t>O due to the instantaneous nature of the coupling

constant. However, at any given t the probability of excitation is

significant only for a fraction of the fV's. On the other hand, it can

be seen from Eq.(3.1) that the maxima of the amplitudes A2(t) are
V

located at v = At2 . In the spin chain, that corresponds to the

boundaries jtv of the region in which the significant excitations

are taking place.

The transverse correlation function can now be obtained as follows: ,

<0t) =() (S'x(t),S'x) a M~ 0 t

_ 1 exp(--.At)

- 1 exp(-J 2 t2 ) (3.9)

4~ 5

which agrees with the results found in the literature.4'5

Consider now the TI case. The time evolution of the operator

S x is represented by -

d-1Sx(t) E a' (t)f' (3.10)
A)O V V



where f'= S (O) = , and primed variables are used to distinguish

the notation here from that of the XY case. By using RRI we obtain

f'2 = -J(0_- s  + SS+l)'
~2J(SxS y Z x)z

i- i j J 1+-' 2J3(sY-SZ + 4SX-ISYSX+ + SZ~+I

fs= 4J4(S X S - 20_1 S Sx~ - 3SX SYSY - 3V_ SYSX
4 21 1 j1 j-1 j j+1 -i jj+1

+ s s z Sx

J+l J+2) , etc. (3.11)

In spite of the basis vectors f' here are different from the basis

vectors f of the XY case, the relative norms assume the same form,

namely,

A' = A'(3.12),V = ,A v = 1, 2, 3, (3..2)

where A' = J2. This leads to the same dynamical behavior as with the

XY model and the spin Van der Waals model. In particular, the spin

correlation function for the TI case is found to be

<S (t)S(O)> = -exp(-3JZt2) (3.13)3 J
which also agrees with previous results. 4'5 Notice that the basal

frequencies Al and A'h of these models can be made equal by rescaling

the coupling constants. Conversely, one can say that the XY model

and the TI model are dynamically equivalent with respect to the time

evolution of S(t).

mJ

--- 4. -
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Consider now the Brownian analogs of the generalized Langevin

equation, Eq.(2.8). The spin random forces for the XY and TI cases

are given respectively by

F(t) = b (t)f (3.14a)
V=1 V

and

F'(t) = E b',(t)f'l , (3.14b)

with f and f'V given by (3.2) and (3.11). The memory functions by(t)

can be expressed as

b (t)= EA(mV+1) CV tm (3.15)
m=0

with a similar expression for b' (t) involving A'. The coefficients Cv

are obtained recursively by

n 2p n
Z p = , n=0,1,2,... (3.16)

p=O r=O 2Pp, 2n-r C2(n-p)+v-1 2 nnv

The memory function 0(t) of the XY model is found to be

0(t) b( M 1 2At2  1OA2t4  74A3t6  706A 4t8  8612A 5tIo

1. + + " "

(3.17)
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A similar expression for the memory-function of the TI model is

obtained from Eq.(3.17) by the replacement A -, A'. The remaining

memory functions b (t) were first calculated by Lee et a17, and

their results are reproduced here in Fig.2. In that figure, A is

taken to be unity for convenience. From the generalized Langevin

equations one can see now that S(t) evolves in time modulated by

the memory function *. The random force F, with components along

the higher dimensions of the dynamical Hilbert space ( I = 1 -)

acts to pull the time evolution away from the basal plane onto

higher reaches of .
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IV. CONCLUSIONS

We investigated the time evolution of a tagged spin variable S(t)

in the one-dimensional S= isotropic XY model and transverse Ising model

at infinite temperature by using the method of recurrence relations.

This method lends itself to a detailed description of the dynamical

behavior of these systems, whether by looking at the propagation of

the excitations along the spin chains, or by examining the effects

of the memory funcions and the random forces of a generalized Langevin

equation. The time evolution of S'.(t) is given as an orthogonal

expansion in a properly defined Hilbert space in each of these systems.

The relative norms of the basis vectors in each of the XY and TI models

have the same structure, resulting in similar dynamical behavior for Sx(t)

in both cases. We obtained expressions for the transverse spin correlation

functions, relaxation functions, memory functions, and random forces

for these systems. These results are valid in the thermodynamic limit

(N = -).

For a finite system, there is always an upper bound for the

dimensionality d of the realized Hilbert space and, as a consequence,

only periodic solutions are admissible. In that case the system will

eventually return to its initial state with an excitation localized,

say, at site j. Thus, for a finite system, there can never be

an equipartition of energy and the system is non-ergodic. On the

other hand, for infinite systems the dimensionality of the Hilbert

space has no a priori constraints on its upper bound. The dimensionality

of the Hilbert space depends on the model as well as on the dynamical

variable under consideration. 11
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As we have seen, the Hilbert space of S'(t) has infinite dimensions

in both XY and TI cases discussed here. This leads to a propagation

of an excitation throughout the spin.chain, whose propability

amplitudes decay with time in a Gaussian fashion. The system

under consideration never returns to its initial state, thus the

process is irreversible. As t -) -, having an infinite number

of basis vectors, Sx(t) must sample all reaches of the Hilbert space

and it is ergodic in both the XY and TI models. This conclusion is in

accordance with the results of Perk et a112 for the XY case. In the

case where the dynamical variable of interest is a conserved quantity,

the dimensionality of its Hilbert space is d-1, and that variable

is non-ergodic. That is the case with the magnetization in the

XY model 12'13. We are currently investigating the formal aspects

of the connection between ergodicity and dimensionality of realized

dynamical Hilbert spaces. Our results will be reported in a forthcoming

paper.

ACKNOWLEDGEMENTS

This work was supported in part by the Department of Energy and

the Office of Naval Research.



16

REFERENCES

1. E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. 16, 941 (1961).

2. S. Katsura, Phys. Rev. 127, 1508 (1962).

3. Th. Niemeijer, Physica 36, 377 (1967).

4. U. Brandt, and K. Jacoby, Z. Phys. B 25, 181 (1976).

5. H. W. Capel, and J. H. H. Perk, Physica 87A, 211 (1977).

6. M. H. Lee, Phys. Rev. B26, 2547 (1982); Phys. Rev. Lett. 49, 1072 (1982);

J. Math. Phys. 24, 2512 (1983).

7. M. H. Lee, I. M. Kim, and R. Dekeyser, Phys. Rev. Lett. 52, 1579 (1984);

11. H. Lee, Can. J. Phys. 61, 428 (1983).

8. M. H. Lee, and J. Hong, Phys. Rev. Lett. 48, 634 (1982); Phys. Rev. B30,

6756 (1984); M. H. Lee, J. Hong, and N. L. Sharma, Phys. Rev. A29, 1561

(1984).

9. J. Florencio, and 11. H. Lee, Phys. Rev. A31, 3231 (1985).

10. M. H. Lee, Phys. Rev. Lett. 51, 1227 (1983).

11. For instance, we find that for the Ising model in the absence of

an external field the dynamical Hilbert space of S. (c=x,y, or z) is3

finite-dimensional even in the thermodynamic limit. This permits

only oscillatory solutions so that a local excitation does not

propagate throughout the system. These results will be published later.

12. J. H. H. Perk, H. W. Capel, and Th. J. Siskens, Physica 89A, 304 (1977).

13. P. Mazur, Physica 43, 533 (1969).



FIGURE CAPTIONS

Fig. 1 Probabilities Az(t) vs time,0S_(t) samples the basis vectors fJ V

The time is given in units of the basal frequency Ah.

Fig. 2 Memory functions b (t) vs time for both XY and TI models.

The basal frequencies Ah and A'h are taken to be unity in

both axes.
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